THIENOAZATROPONE: SYNTHESIS OF 7-CHLORO-8H-THIENO[3,2-c]AZEPIN-8-ONE

Kyosuke SATAKE, Masaru KIMURA, and Shiro MOROSAWA
Department of Chemistry, Faculty of Science, Okayama University
Tsushima Naka 3-1-1, Okayama 700

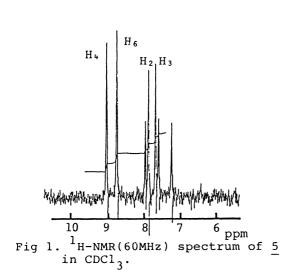
A thienoazatropone, 7-chloro-8H-thieno[3,2-c]azepin-8-one($\underline{5}$) is synthesized from 4,5-dihydro-8H-thieno[3,2-c]azepin-8-one($\underline{2}$) using t-butyl hypochlorite. In addition, some physical properties of 5 are disscussed.

In a series of our synthetic investigations of the nitrogen-containing seven-membered ring compounds, we are interested in the fused π -conjugated system of thiophene which is classified as π -excess heteroaromatic ring and cationic 4-aza-tropone which is, at least to our knowledge, yet unknown.

Previously, we reported that the synthesis of 6,7-dihydroazirino[1,2-a]thieno-[2,3-d]pyrid-8-one($\underline{1}$) and base-catalyzed ring-opening reactions of the aziridine ring of $\underline{1}$ gave 4,5-dihydro-8H-thieno[3,2-c]azepin-8-one($\underline{2}$). Now we wish to report the synthesis of novel heterocyclic system, 7-chloro-8H-thieno[3,2-c]azepin-8-one($\underline{5}$), which has a thiophene-fused 4-azatropone structure, from $\underline{2}$. Thienoazatropone $\underline{5}$ is considered as 5-aza-analogue of 8H-cyclohepta[b]thiophen-8-one($\underline{8}$), which is also yet unknown heterocyclic conjugated system.

Two molar equivalents of t-butyl hypochlorite is added to a dichlolomethane solution of $\underline{2}$ at -10°C. After 2 hr, the treatment of this resulting solution with excess triethylamine at room temperature for 1 hr gives a crude product of $\underline{5}$, which is purified by means of a column chromatography on silica gel to give pale yellow crystals²⁾ (mp.175-177°C; Mass m/e 197(M⁺,100%); IR 1599,1590,1560,1527cm⁻¹) in 80% yield.

On the other hand, 7-chloro-4,5-dihydro-8H-thieno[3,2-c]azepin-8-one($\underline{7}$)²⁾ (mp. 133.5-134°C;IR 1592cm⁻¹;NMR(CDCl₃+DMSO-d₆) δ 4.33(d,J_{4,5}=6.5Hz,2H,H₄),6.90(d,J_{2,3}=5.0 Hz,1H,H₃),7.47(d,J_{5,6}=7.4Hz,1H,H₆),7.53(d,J_{2,3}=5.0Hz,1H,H₂),8.42(br,1H,H₅)) is ob-


tained in quantitative yield when one molar equivalent of t-butyl hypochlorite is used in this reaction sequence in under similar conditions.

The formation of $\underline{5}$ from $\underline{2}$ would be explained by possible intervention of the two intermediates ($\underline{3}$ and $\underline{4}$). In the first step, addition reaction of t-butyl hypochlorite to the C_6 - C_7 double bond of $\underline{2}$ would give intermediate $\underline{3}$. The formation of $\underline{7}$ elucidates the intermediate $\underline{3}$ and the regionelectivity of the addition which may be controlled by the nucleophilic property of $\underline{2}$ as an enamine. Subsequently, the well-known N-chlorination $\underline{3}$) occurs to give intermediate 4.

The structure of $\underline{5}$ is confirmed on the basis of its spectral data. The NMR spectrum of $\underline{5}$ exhibits two singlets of seven-membered ring protons at $\delta 8.71$ and 9.02, and an AB quartet(J=5.0Hz) of thiophene ring protons at $\delta 7.61$ and 7.90. These four protons are assigned by the use of shift-reagent, Eu(fod)₃. This is shown in Figure 1.

Comparison of electronic spectrum of $\underline{5}$ in ethyl alcohol with that in dichloromethane reveals that the lowest energy absorption is assigned as an intramolecular charge-transfer band(Fig. 2).⁴)

From these results, e.g., remarkably low chemical shift of four ring protons, especially, chemical shifts of $\rm H_4$ and $\rm H_6$ which are much lower than α -protons of pyridine, and the intramolecular charge-transfer band in its electronic spectra, thienoazatropone system $\underline{5}$ is considered as a partly polarized species as shown by the resonance structure $\underline{6}$, which is quite analogous to the conjugation in azulene.

3.5 3.0 250 300 350 400_{pm}

Fig 2. Electronic spectra of 5 in ethyl alcohol(———) and in dichloromethane(----).

Further investigation on the chemical reactivities of <u>5</u> is now in progress. Acknowledgement: This work is supported by a Grant-in-Aid for Scientific Research from the Ministry of Education of Japan(No.56740214). References

- 1) K.Satake, M.Kimura, and S.Morosawa, Chem.Lett., 1980, 1389.
- 2) Compounds $\underline{5}$ and $\underline{7}$ give satisfactory elemental analysis data for C_8H_4ClNOS and C_8H_6ClNOS , respectively.
- 3) a) M.Anbar and D.Ginsberg, Chem.Rev., 54,925(1954).
 - b) B.Altenkirk and S.S.Israelstam, J.Org.Chem., 27,4532(1962).
- 4) G.C.Pimentel, J.Amer.Chem.Soc., <u>79</u>, 3323(1957).